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BACKGROUND: Surrounding green, air pollution, and noise have been associated with cardiometabolic diseases, but most studies have assessed only
one of these correlated exposures.
OBJECTIVES:We aimed to evaluate associations of combined exposures to green, air pollution, and road traffic noise with cardiometabolic diseases.

METHODS: In this cross-sectional study, we studied associations between self-reported physician-diagnosed diabetes, hypertension, heart attack, and
stroke from a Dutch national health survey of 387,195 adults and residential surrounding green, annual average air pollutant concentrations [including
particulate matter with aerodynamic diameter ≤10 lm (PM10), PM with aerodynamic diameter ≤2:5 lm (PM2:5), nitrogen dioxide (NO2), and oxida-
tive potential (OP) with the dithiothreitol (DTT) assay (OPDTT)] and road traffic noise. Logistic regression models were used to analyze confounding
and interaction of surrounding green, air pollution, and noise exposure.
RESULTS: In single-exposure models, surrounding green was inversely associated with diabetes, while air pollutants (NO2, OPDTT) and road traffic
noise were positively associated with diabetes. In two-exposure analyses, associations with green and air pollution were attenuated but remained. The
association between road traffic noise and diabetes was reduced to unity when adjusted for surrounding green or air pollution. Air pollution and sur-
rounding green, but not road traffic noise, were associated with hypertension in single-exposure models. The weak inverse association of surrounding
green with hypertension attenuated and lost significance when adjusted for air pollution. Only PM2:5 was associated with stroke and heart attack.
CONCLUSIONS: Studies including only one of the correlated exposures surrounding green, air pollution, and road traffic noise may overestimate the
association of diabetes and hypertension attributed to the studied exposure. https://doi.org/10.1289/EHP3857

Introduction
In daily life, humans are exposed to a mixture of environmental
exposures that can affect health. Exposure to air pollution and road
traffic noise, for example, have both been associatedwith increased
risks of diabetes and hypertension (Wang et al. 2014a; Balti et al.
2014; Eze et al. 2015; Dzhambov 2015; Fuks et al. 2014, Van
Kempen and Babisch 2012). Air pollution and road traffic noise
may induce inflammation, oxidative stress, vascular dysfunction,
and autonomic nervous system imbalance, thereby contributing to
the development of cardiometabolic diseases (Münzel et al.
2016b). On the other hand, research suggests that exposure to sur-
rounding green is associated with reduced risks of cardiometabolic
disease (Dalton et al. 2016; Astell-Burt, et al. 2014; Ngom et al.
2016; Maas et al. 2009). Surrounding green has been hypothesized
to benefit health via several pathways, including promoting physi-
cal activity and social cohesion and decreasing psychological
stress (Hartig et al. 2014; Nieuwenhuijsen et al. 2017).

Long-term exposures to surrounding green, air pollution, and
road traffic noise are, to a certain extent, related to each other.
Higher levels of surrounding green, for example, tend to go to-
gether with lower levels of air pollution and traffic noise because
of absence of air pollution and noise sources in green areas or

removal of air pollutants from the air (Markevych et al. 2017).
Road traffic noise is related to traffic intensity, which also affects
traffic related air pollutants such as nitrogen dioxide (NO2) and
black carbon [PM2:5absorbance (PM2:5abs)], which can lead to spatial
correlation between air pollution and road traffic noise (Münzel
et al. 2016a; Tétreault et al. 2013). Correlations between sur-
rounding green, air pollution, and road traffic noise depend on the
study setting but are typically moderate (Boogaard et al. 2009;
Fecht et al. 2016, Hystad et al. 2014, Thiering et al. 2016;
Dadvand et al. 2012).

The large majority of studies on the associations of long-term
exposure to surrounding green, air pollution, or road traffic noise
have evaluated single-exposure associations of one of these envi-
ronmental exposures, ignoring potential confounding by and inter-
action with the other two environmental exposures. Therefore, it is
difficult to interpret the results of studies that only evaluated single
exposures. Only a few studies investigated the combined effects of
these environmental exposures with cardiometabolic diseases.
Some of these studies suggest that exposure to air pollution con-
founds associations with exposure to road traffic noise and vice
versa (Balti et al. 2014; Eze et al. 2017; Floud et al. 2013; Bodin
et al. 2016; Selander et al. 2009; Sørensen et al. 2013), while there
are also indications for interaction effects between air pollution
and road traffic noise (Sørensen et al. 2014).

Studies that evaluated associations of surrounding green with
health have treated air pollution and traffic noise as confounders
(Hystad et al. 2014; Crouse et al. 2017; Thiering et al. 2016;
Villeneuve et al. 2012) or as mediators (James et al. 2016; Gascon
et al. 2018; Dzhambov et al. 2018). The difference between treating
them as confounders or mediator is the assumption of causality of
the relationships of surrounding green with air pollution and road
traffic noise. If air pollution and road traffic noise are on the causal
pathway from surrounding green to health, mediation analysis is
appropriate. Such a causal relationship is supported by the fact that
more surrounding greenmay lead to lower road traffic noise and air
pollution concentrations by limiting dispersion of noise and air pol-
lution through green barriers or by scavenging of air pollution.
These mechanisms, however, explain only part of the empirical
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correlations of surrounding greenwith air pollution and road traffic
noise. More important is the fact that in a greener area, there are
fewer sources of air pollution and road traffic noise and, conse-
quently, lower air pollution and noise levels. This reflects a com-
mon source (or lack thereof) and thus not a causal pathway from
surrounding green to health. Hence, air pollution and road traffic
noise can be considered both as confounders and as mediators in
the analysis of the relationship between surrounding green and
health.

Strak et al. (2017) previously reported associations between
exposure to air pollution and diabetes in a large national health
survey of 387,195 citizens aged≥19 y. For the current study, sur-
rounding green and road traffic noise were also added to the
health survey data. Further, besides diabetes, we also included
hypertension, stroke, and heart attack. For all these health end
points, there is some evidence for associations with surrounding
green, air pollution, and road traffic noise from typically single-
exposure studies. The aim of this study was to evaluate associa-
tions of combined long-term exposure to surrounding green, air
pollution, and road traffic noise with prevalence of diabetes,
hypertension, stroke, and heart attack.

Methods
We specifically analyzed potential confounding and interaction of
long-term exposure to surrounding green, air pollution, and road
traffic noise. In addition, we analyzed mediation to evaluate
whether decreased levels of air pollution and road traffic noise are
possible mechanisms underlying potential beneficial associations
of surrounding green with cardiometabolic outcomes. For the
mediation analyses, we thus assumed that air pollution and road
traffic noise would be on the causal pathway from surrounding
green to health, while for the confounding analyses, we assumed
that air pollution and road traffic noise were not on the causal path-
way from surrounding green to health. Figure 1 provides a graphical
representation of the four approaches (single exposure, confound-
ing, interaction, and mediation). Air pollution and road traffic noise
were treated as mutual confounders, because one exposure is not on
the causal pathway of the other exposure to health.

Study Design and Study Population
We used cross-sectional data from a national health survey
[Dutch Public Health Monitor 2012 (PHM) (Gezondheidsmonitor
Volwassenen GGD-en, CBS en RIVM)] that covered issues related
to personal characteristics, lifestyle, socioeconomic status (SES),
and physical and mental health. The PHM was conducted by 28
public health services (GGD-en), Statistics Netherlands (CBS),
and the National Institute for Public Health and the Environment
(RIVM) in 2012. The elderly (≥65 y) were oversampled as part
of the design of the PHM. The PHM includes information on
387,195 citizens aged ≥19 y; the response rate was 45–50%. The
home address of each subject was geocoded; hence, no individu-
als were excluded due to missing geocodes.

Statistics Netherlands enriched the PHM with information
on standardized household income and country of origin.
Standardized household income was adjusted for differences in
household size and composition. The PHM was also linked
with information on SES at the neighborhood level (four-digit
postal code area). This indicator represents the educational,
occupational, and economical status of the neighborhood and is
derived by the Netherlands Institute for Social Research (Knol
1998). A high SES neighborhood score indicates a high SES of
the neighborhood. We used the 2002 SES score. The 2002 SES
correlated highly with the 2010 SES score, which became avail-
able in a late phase of the study (rs=0:86).

Outcome Definition
The PHM included questions on diabetes, hypertension, stroke,
and heart attack. The main questions were: “Do you have diabe-
tes?”, “Do you have hypertension?”, “Have you ever had a
stroke?” and “Have you ever had a heart attack?”. These ques-
tions were followed by a question “In the last 12 months, have
you been treated for . . . by a physician or a specialist?”. Strak
et al. (2017) previously showed that 92% of positive answers to
the main question for diabetes were also positive in the question
about treatment by a physician or specialist in this study popula-
tion. Moreover, nearly 85% of the population with self-reported
physician-diagnosed diabetes in the past 12 months have also
been prescribed diabetes medication, based on an external data-
base (Strak et al. 2017). For hypertension, 91% of the positive
answers for the main question were also positive in the question
about treatment by a physician or specialist. For heart attack,
70% of the people who ever had a heart attack reported that they
have been treated by a physician or a specialist within the last 12
months. For stroke, this was 49%.

Self-reports from questionnaires have been found to agree
moderately to very well with medical records for diabetes, hyper-
tension, and heart attack; kappa coefficients ranged from 0.76 to
0.80 for diabetes, from 0.56 to 0.75 for hypertension, and from
0.48 to 0.80 for heart attack (Okura et al. 2004; Schneider et al.
2012; Hansen et al. 2014;Muggah et al. 2013;Machón et al. 2013).
Agreements for stroke varied per study; kappa statistics ranged
from 0.35 to 0.71 (Okura et al. 2004; Schneider et al. 2012;
Muggah et al. 2013;Machón et al. 2013; Hansen et al. 2014).

We used the questions about treatment by a physician or specialist
to define health outcomes. As agreements between the main question
and the question about treatment were moderate for heart attack and
stroke, the first question (“Have you ever had a heart attack/stroke”)
was used as the health outcome in sensitivity analyses.

Exposure Assessment
Surrounding green. We used two green metrics to assess expo-
sure to surrounding green that have been described previously
(Klompmaker et al. 2017). In brief, the Normalized Difference
Vegetation Index (NDVI) was used to assess surrounding green-
ness, i.e., average density of green vegetation within a circular
buffer around the participant’s residential address. The NDVI
was derived from LANDSAT 5 TM and captures the density of
green vegetation at a spatial resolution of 30× 30 m based on
land surface reflectance of visible (red) and near-infrared parts of
spectrum (https://earthobservatory.nasa.gov). NDVI values range
between −1 and 1, with higher numbers indicating more photo-
synthetically active greenness and thus a higher density of green
vegetation. Negative NDVI values were set to zero (Klompmaker
et al. 2017). We combined cloud-free images from the summer of
2010 to create a map that covers (almost) the whole country.

A highly detailed national land-use database of the Netherlands
of 2010 [TOP10NL, CC-BYKadaster, https://www.kadaster.com/
automatic-generalisation (Kadaster 2010)] was used to assess sur-
rounding green space, i.e., the proportion of green space within a
buffer around the participant’s residential address. TOP10NL
divides the Netherlands into polygons with different classes of land
use (water, road, and terrain). The terrain class is divided in 21 sub-
classes; 11 of these classes correspond to green areas. TOP10NL
does, in contrast to the NDVI, not include private green property
(such as gardens) and street greenery.

Surrounding greenness and surrounding green space were
assessed in buffers with radii of 100; 300; 500; 1,000; and 3,000 m
for all addresses in the Netherlands. Analyses to assess surrounding
greenwere performed inArcGIS (version 10.2.2; Esri).
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Air pollution. For each home address, long-term average
concentrations of particulate matter [PM with aerodynamic di-
ameter ≤10 lm (PM10), PMcoarse, PM with aerodynamic diame-
ter ≤2:5 lm (PM2:5), PM2:5abs] and NO2 were assessed by land-
use regression (LUR) models developed within the framework
of the European Study of Cohorts for Air Pollution Effects
(ESCAPE) project (Beelen et al. 2013; Eeftens et al. 2012).
NO2 levels higher than 80lg=m3 (n=18) were set to 80 lg=m3,
as these values are probably due to an unrealistic combination
of explanatory variables. Further, we used long-term average
concentrations of two oxidative potential (OP) metrics: electron
spin resonance (OPESR) and dithiothreitol (OPDTT) (Yang et al.
2015). OP is an intrinsic measure of PM to oxidize target mole-
cules, and thus, it effectively incorporates biologically relevant
properties of PM (Yang et al. 2015). Performances of LUR
models were evaluated using leave-one-out cross validation
(R2LOOCV) and ranged from 0.38 for PMcoarse to 0.89 for
PM2:5abs (Table S1). Models were based on air pollution meas-
urements conducted in 2009, 3 y prior to the health survey.
There were no LUR models available for 2012. Previous studies
have shown that the spatial variation of air pollution and traffic
noise exposure levels remain stable over periods of about 10 y
in Western countries (Eeftens et al. 2011; Fecht et al. 2016).

Road traffic noise. Residential road traffic noise levels were
assessed by the Standard Model Instrumentation for Noise
Assessments (STAMINA). STAMINA is a model to map envi-
ronmental noise in the Netherlands. This model was developed at
the DutchNational Institute for Public Health and the Environment
(RIVM) and uses the standard Dutch calculation method for traffic
and industrial noise (Schreurs et al. 2010). The spatial resolution of
the noise maps depends on the distance between source and obser-
vation point. The lowest resolution is 80× 80 m, and close to the
source the level of detail is the highest, with a resolution of
10× 10 m (Schreurs et al. 2010). This method is used in the
Netherlands to implement the European Environmental Noise
Directive (EUDirective 2002).

Daily average (24 h, Lden) and nighttime average (2300–
0700 hours, Lnight) road traffic noise exposures were assessed
for 2011. Because Lden and Lnight were highly correlated
[Spearman’s rank order correlation coefficient ðrsÞ=0:99], we
only used Lden in our analyses.

Exclusion of Subjects
Since we did not have land-use data across the border of the
Netherlands, subjects with residential addresses within 3 km
(largest buffer) of the border of the Netherlands were excluded
from our analyses (8.4%).

Statistical Analyses
We calculated Spearman correlations to evaluate relations between
the exposure variables at PHM subject addresses. We developed
logistic regression models to study whether the exposure variables
were associated with cardiometabolic diseases (diabetes, hyperten-
sion, stroke, and heart attack). We performed single-exposure,
multi-exposure (confounding and interaction), andmediation anal-
yses. An example of the different analyses performed for surround-
ing greenness (NDVI 300 m), air pollution (OPDTT), and diabetes
is shown in Figure 1. Further, we calculated Spearman correlations
between surrounding green, road traffic noise, and measured air
pollution at the Dutch ESCAPE measurement sites to evaluate
whether correlations between modeled and measured exposures
differed.

All analyses were performed with R (version 3.3.1; R
Development Core Team).

Single-exposure regression models.We used single-exposure
regression models to analyze individual associations of expo-
sures. We specified a priori several regression models with
increasing degree of covariate adjustment. Model 1 included age
and sex. Model 2 was additionally adjusted for individual SES
variables (marital status, country of origin, work, standardized
household income, level of education). Model 3 further included
smoking habits (current, former, never), number of cigarettes/
day, alcohol consumption (current, former, never), number of
alcohol glasses/week, physical activity, and body mass index.
Model 4 was additionally adjusted for area-level SES (main
model). Categories of covariates in the regression analyses were
identical to the categories presented in Table 1, except for age
(12 categories: 19–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–
54, 55–59, 60–64, 65–74, 75–84, ≥85 y).

For each exposure variable, we specified a regression model
with the exposure variable as linear term [1 degree of freedom
(df)]. Additionally, we used natural splines (3 df) to determine
the linearity of exposure–response relationships (only for the
main model). To test whether the goodness of fit of the models
with splines was significantly better than the goodness of fit of
the linear models, we used the likelihood ratio test and defined
statistical significance by a two-sided alpha level of p=0:05.
Exposure–response curves showed a nonsignificant or small to
moderate deviation from linearity for most associations (Figure
S1). Deviations from linearity primarily occurred in areas with
very few data, as evidenced by the wide confidence intervals
(CIs) of the nonlinear part of most curves. We considered the
deviations from linearity to be sufficiently large to present both
linear and quintile analyses in the paper, but not large enough to
make the linear analysis uninformative. We a priori decided to
use quintiles instead of tertiles or quartiles to obtainer a finer
assessment, which was made possible by the large study popula-
tion. We presented the linear effect estimate of exposure to sur-
rounding green and air pollution per interquartile range (IQR)
and for road traffic noise per 5 dB. We used 5 dB instead of the
IQR, as this is the standard for reporting of noise effect estimates.

Surrounding green in different buffer sizes was highly corre-
lated, and associations between closely related buffer sizes, such
as 1,000 and 3,000 m, barely differed (data not shown). Hence,
we decided to only report associations of the 300- and 1,000-m
buffers and focus on these buffers in the multi-exposure models
to limit the number of reported analyses.

As sensitivity analyses, we evaluated associations of sur-
rounding green, air pollution, and road traffic noise with cardio-
metabolic diseases in the elderly population (≥75 y, n=62,111).
Further, we evaluated the associations of exposures with heart
attack and stroke by the questions if participants ever had a heart
attack (n=14,675) or stroke (n=12,068) instead of if they have
been treated by a physician or a specialist within the last 12
months for a heart attack or stroke.

Multi-exposure regression models. We used multi-exposure
models to analyze whether a potential association of one of the
environmental exposures with cardiometabolic health was con-
founded by other environmental exposures. Here, we specified
surrounding green, air pollution, and road traffic noise as mutual
confounders in the analyses with cardiometabolic health and thus
assumed a noncausal relationship between surrounding green and
air pollution and road traffic noise.

To evaluate potential mutual confounding of exposures, we
specified two-exposure models. We performed multi-exposure
regression analyses with combinations of surrounding green, air
pollutants, and road traffic noise exposures. We used generalized
variance inflation factors to quantify multicollinearity between
the exposures (Fox and Monette 1992).
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Joint odds ratio. In epidemiological studies, it can be difficult
to disentangle individual effects of correlated exposures, as expo-
sure estimates share overlapping information. Hence, in exposure–
health models, the estimated coefficient for one exposure based on a
single-exposure model could be partly or fully explained (con-
founded) by the overlapping information with another exposure,
depending on the extent of overlap and the associationswith the out-
come. Therefore, the estimated coefficient for an exposure from a
single-exposuremodel could be an overestimation of the true coeffi-
cient of that exposure. However, because no adjustment for the
overlapping informationwith the other exposure ismade in a single-
exposure model, the coefficient of the single-exposure model could
be a good indication for the joint coefficient of both exposures.

A joint coefficient of co-occurring exposures can be assessed
using the cumulative risk index (CRI) method (Crouse et al.

2015; Jerrett et al. 2013; Lippmann et al. 2013). Previous studies
used the CRI to find out which combinations of air pollutants are
required to fully capture the toxicity of the mix of air pollutants
(Jerrett et al. 2013; Crouse et al. 2015). We used the CRI to
investigate which combination of exposures is needed to assess
the joint impact of surrounding green, air pollution, and road
traffic noise on cardiometabolic diseases. As we found negative
correlations between surrounding green, air pollution, and road
traffic noise, exposure to a combination of low levels of sur-
rounding green and high levels of air pollution and road traffic
noise or the other way around seems to occur more frequently
than exposure to high or low levels of all three exposures.
Hence, we estimated the association of a combination of
increased air pollution and road traffic noise and decreased sur-
rounding green. The joint odds ratio (JOR) represents the odds

A Single-exposure effect

B Confounding

C Interac�on

D Media�on

NDVI 300m Diabetes

OPDTT

NDVI 300m Diabetes

OPDTT Diabetes

NDVI 300m Diabetes

OPDTT

NDVI 300m Diabetes

OPDTT

Direct effect

Indirect effect

Figure 1. Schematic overview of the analyses performed for two exposures and one health outcome. The black solid lines represent hypothesized causal rela-
tionships; the black dashed line represents a noncausal relationship. Note: NDVI, Normalized Difference Vegetation Index; OPDTT, oxidative potential (OP)
metric with dithiothreitol (DTT).
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Table 1. Characteristics of the population (n=354,827).

Characteristic Category n (%)

Sex Female 193,782 (54.6)
Age (years) 19–39 68,940 (19.4)

40–64 134,161 (37.8)
≥65 151,726 (42.8)

Marital status Married, living together 246,775 (70.6)
Unmarried/never married 42,233 (12.1)

Divorced 22,509 (6.4)
Widowed 38,089 (10.9)

Country of origin Dutch 308,167 (86.8)
Other, Westerna 29,215 (8.2)

Other, non-Westernb 6,543 (1.8)
Netherlands Antilles 1,500 (0.4)

Suriname 3,820 (1.1)
Turkey 3,284 (0.9)
Morocco 2,298 (0.6)

Education Primary or less 33,679 (9.8)
Lower secondary 119,549 (34.9)
Higher secondary 97,005 (28.3)

University 92,733 (27.0)
Work Yes 158,704 (48.1)
Standardized household incomec <e15,200 35,539 (10.1)

e15,200–19,399 67,391 (19.1)
e19,400–24,199 74,677 (21.2)
e24,200–30,999 83,916 (23.8)

≥e31,000 91,224 (25.9)
Smoking habits Current 65,702 (19.7)

Former 133,267 (39.9)
Never 134,794 (40.4)

Number of cigarettes/day for current smokers [mean (SD)] — 10.2 (8.3)
Alcohol consumption Current 280,311 (82.2)

Former 20,564 (6.0)
Never 40,007 (11.7)

Number of alcohol glasses/week for current consumers [mean (SD)] — 8.5 (9.6)
BMI <18:5 kg=m2 4,628 (1.3)

18:5–24:9 kg=m2 154,595 (44.3)
25:0–30:0 kg=m2 130,058 (37.2)
>30:0 kg=m2 59,987 (17.2)

Physical activity ≤340min=wk 83,340 (25.1)
340–720min=wk 86,401 (26.0)
720–1,380min=wk 80,470 (24.2)
>1,380min=wk 81,634 (24.6)

SES neighborhoodd ≤30 75,223 (21.3)
30–34 78,723 (22.3)
35–38 73,947 (20.9)
38–43 58,521 (16.5)
>43 67,342 (19.0)

Self-reported physician-diagnosed diabetes Yes 28,312 (8.0)
Self-reported physician-diagnosed hypertension Yes 65,407 (21.6)
Self-reported physician-diagnosed stroke Yes 6,975 (2.1)
Self-reported physician-diagnosed heart attack Yes 11,866 (3.5)
NDVI 300 m [median (IQR)] — 0.52 (0.13)
NDVI 1,000 m [median (IQR)] — 0.56 (0.14)
TOP10NL 300 m [median (IQR)]e — 0.24 (0.24)
TOP10NL 1,000 m [median (IQR)]f — 0.40 (0.32)
PM10 [median (IQR)] lg=m3 24.4 (1.24)
PMcoarse [median (IQR)] lg=m3 8.1 (0.82)
PM2:5 [median (IQR)] lg=m3 16.7 (0.83)
PM2:5abs [median (IQR)] 10−5=m 1.2 (0.25)
NO2 [median (IQR)]g lg=m3 23.4 (7.85)
OPDTT [median (IQR)] nmolDTT=min=m3 1.19 (0.27)
OPESR [median (IQR)] A:U:=1,000=m3 0.89 (0.18)
Road traffic noise [median (IQR)] Lden (dB) 53.3 (7.5)

Note: —, no data; BMI, body mass index; CI, confidence interval, IQR, interquartile range, NDVI, Normalized Difference Vegetation Index; NO2, nitrogen dioxide; OPDTT, oxidative
potential (OP) metric with dithiothreitol (DTT); OPESR, oxidative potential (OP) metric with electron spin resonance; PM2:5, PM with aerodynamic diameter ≤2:5 lm; PM2:5abs, black
carbon (PM2:5absorbance); PM10, particulate matter with aerodynamic diameter ≤10 lm; SD, standard deviation; SES, socioeconomic status; A.U., arbitrary unit.
aOther Western: Europe, North America, Oceania, Indonesia, Japan.
bOther non-Western: Africa, Latin America, Asia (excluding Indonesia and Japan).
cStandardized household income is adjusted for differences in household size and composition.
dSES neighborhood represents the educational, occupational, and economical status of the neighborhood.
eSurrounding green space in a 300-m buffer based on TOP10NL.
fSurrounding green space in a 1,000-m buffer based on TOP10NL.
gNO2 values higher than 80 lg=m3 were set at 80 lg=m3.
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for a 1-unit (IQR) increase in air pollution and road traffic noise
and a 1-unit decrease in surrounding green exposure relative to
the odds for no increase (no decrease in surrounding green) in
any of the exposures. The direction of the associations of sur-
rounding green in the JORs are opposite to the direction used to
describe associations of surrounding green in single- and multi-
exposure models.

We denote the JOR based on the combination of the p expo-
sures evaluated at x as the CRI and define it as

CRI =exp
Xp
p=1

bbpxp

 !
=exp

�bb 0
x
�
=
Yp
p=1

JORp

where bb0
=
�bb1, . . . ,bbp

�
are the estimates of the log odds ratio

(OR) for the p exposures estimated in a logistic regression model
consisting of all p exposures together, x0 = ðx1, . . . , xpÞ are the
levels at which each exposure-specific OR is evaluated, and
JORp =exp

�bbpxp
�
denotes the JOR for the pth exposure in a mul-

tiexposure model. JORs were estimated assuming additive effect
estimates (log ORs) of joint exposures. The 95% CI of CRI is

defined by: exp
�bb 0

x±1:96×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 ×CovðbbÞ× x

q �
. This definition

of the CI is similar to that described by Crouse et al. (2015) and
Jerrett et al. (2013). Interactions are not formally incorporated in
the CRI method, as only main terms of exposures are included in
the regression model used to calculate the CRI.

Interaction analyses. To evaluate potential interactions of
combined exposures, we specified interaction terms in two-
exposure models. To be able to observe patterns of interactions, we
assessed interactions by combining a continuous exposure with
quintiles of another exposure and vice versa, and by continuous ex-
posure terms. Interactions were assessed on the multiplicative
scale, the extent to which, on the OR scale, the effect estimate of
being exposed to both exposures together exceeds the product of
the effect estimates of the two exposures considered separately.
We hypothesized that the association with exposure to air pollution
is strongest (increased odds) in the highest road traffic noise quin-
tile and vice versa. Further, we hypothesized that the association
with air pollution and road traffic noise is strongest (increased
odds) in the lowest surrounding green quintile and that the associa-
tion with surrounding green is strongest (decreased odds) in the
lowest air pollution or road traffic noise quintile. The rationale for
this is that there is some evidence that associations of air pollution
are stronger for people with psychological distress (Hicken et al.
2014) and that people who live in greener areas generally report
less psychological distress (Gascon et al. 2015).

Mediation analyses. We performed mediation analyses to
evaluate whether decreased levels of air pollution and road traf-
fic noise are possible mechanisms underlying potential benefi-
cial associations of surrounding green on cardiometabolic
outcomes. We think that the application of mediation analyses
in our cross-sectional study is reasonable because we assess
mediation between environmental factors where the relation-
ship is immediate. Mediation analysis does not add to the gen-
eral limitation of our cross-sectional study. Previous mediation
analyses in a cohort study have also applied green and air pollu-
tion from the same study period (James et al. 2016). Here, we
specified air pollution and road traffic noise as mediators in the
surrounding green–health association and thus assumed a causal
effect between surrounding green, air pollution, and road traffic
noise. Mediation analyses were only performed when surround-
ing green was significantly associated (decreased OR) with a
cardiometabolic outcome in a single-exposure model. Of the
potential mediator variables (air pollutants and road traffic
noise), we only selected the exposures that were significantly

associated (increased ORs) with the cardiometabolic outcome
for the mediation analyses.

We used the mediation package to estimate the direct, indi-
rect, and total effects and the proportion mediated (Imai et al.
2010; Tingley et al. 2014). The mediation package uses the coun-
terfactual framework to clarify the assumptions needed for causal
mediation. Briefly, we specified mediator models (mediator =
surrounding green+ covariates) and outcome models (outcome=
surrounding green+mediator+ covariates). Both models were
adjusted for SES indicators and lifestyle factors (Model 4). Next,
we included the model objects (mediator model and outcome
model) in the mediate function and specified the “treat” (surround-
ing green) and “mediator” variables. We used continuous terms
for the treat and mediator variables in the mediation analyses.
Exposure–response curves of associations between surrounding
green and the mediators showed small deviations from linearity.
We assessed CIs by 300 nonparametric bootstrap simulations. Due
to computational limitations, we were not able to run the recom-
mended 1,000 bootstrap simulations (Tingley et al. 2014).

Four important underlying confounding assumptions are
required for the mediation analyses: no unmeasured exposure–
outcome confounding, no unmeasured exposure–mediator con-
founding, no unmeasured mediator–outcome confounding, and
no mediator–outcome confounder is affected by the exposure
(VanderWeele 2016). While we were not able to verify these
assumptions, we included major confounders in our mediation
analyses and hence believe these assumptions are reasonable.

Results

Public Health Monitor Statistics
Our study population consisted of 354,827 persons aged 19 y or
older (Table 1). Due to oversampling of the elderly, almost 43%
of the subjects were 65 y or older. Further, people of Dutch origin
(86.8% compared with 78% in the general population) were over-
represented in the PHM. More information on the study popula-
tion can be found elsewhere (Statistics Netherlands 2015).

Of our study population, 8.0% reported physician-diagnosed
diabetes. Treatment in the past 12 months by a physician for
hypertension was reported by 21.6% of the population, and treat-
ment by a physician for heart attack and stroke was reported by
3.5% and 2.1% of the population, respectively. The degree of
overlap between the cardiometabolic diseases was moderate to
low. Of all subjects, 20.8% reported only one cardiometabolic
disease. Two, three, and four cardiometabolic diseases were
reported by 5.3%, 0.6%, and <0:1% of the subjects, respectively.
Agreements between the outcomes were low; kappa values
ranged from 0.05 to 0.18.

Exposure Distribution and Correlations
The variability of TOP10NL surrounding green space [expressed
as median (IQR)] was larger compared with NDVI surrounding
greenness (Table 1). The variability of PM2:5 and PM10 was sub-
stantially lower than the variability of the other pollutants, partic-
ularly NO2 and PM2:5abs. Road traffic noise varied less than NO2
but more than PM2:5 and PM10 (Table 1).

Surrounding green, air pollution, and road traffic noise expo-
sures at the study participants’ home addresses were overall moder-
ately correlated. In general, surrounding green (both NDVI and
TOP10NL) in a 1,000-m buffer was slightly more strongly nega-
tively correlatedwith concentrations of air pollutants and road traffic
noise compared with surrounding green in a 300-m buffer (Figure
2). There was no correlation between NDVI surrounding greenness
and PM2:5 (rs≤ 0:05). Road traffic noise correlated weak to
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moderately with concentrations of air pollutants (0:20< rs<0:50,
Figure 2). Surrounding green was weakly positively correlated with
neighborhood SES (more green in higher SES neighborhoods),
while air pollution and road traffic noise were weakly negatively
correlated with neighborhood SES (Figure 2). Spatial collinearity
was therefore not a concern in our analyses.

Single-Exposure Regression Models
Analyses with surrounding green as continuous terms and quin-
tiles of surrounding green indicated a significant inverse associa-
tion between surrounding green and diabetes in our main models
(Table 2 for continuous term, Table S2 for quintiles). We found a
weak inverse association between surrounding green and the
odds of hypertension, which was significant in the analysis with
surrounding green as continuous term and for the fifth quintile
(Tables 2 and S2). We found no association between surrounding
green and the odds of stroke or heart attack (Tables 2 and S2).

For most air pollutants, analyses with quintiles and with con-
tinuous terms showed a significant positive association with dia-
betes, especially for NO2 and OPDTT (Tables 2 and S2). NO2,
OPDTT, OPESR, and PM2:5abs were significantly associated with
higher odds of hypertension (Tables 2 and S2). ORs for stroke

and heart attack were increased for PM2:5 but not for other air
pollutants (Tables 2 and S2).

Road traffic noise was positively associated with the odds of
diabetes [OR=1:02; 95% CI: 1.00, 1.03) per 5 dB], but not with
the odds of hypertension, stroke, or heart attack (Tables 2 and
S2). Estimated exposure–response curves for diabetes and hyper-
tension are shown in Figure S1.

Associations of surrounding green, air pollution, and road
traffic noise with cardiometabolic outcomes were affected by the
adjustment for covariates. In crude models, surrounding green,
air pollution, and road traffic noise were significantly associated
with diabetes, hypertension, stroke, and heart attack morbidity
(Figure S2). Adjustment for individual SES and lifestyle factors
attenuated the associations substantially (≥20%).

Sensitivity analyses showed similar associations with diabetes
and hypertension in the elderly population (≥75 y) compared
with the full population. Associations of PM2:5 with stroke and
heart attack, on the other hand, were somewhat stronger for the
elderly population compared with the full population (Table S3).
In analyses with heart attack ever and stroke ever, no significant
associations were found with surrounding green or road traffic
noise (Table S4). For air pollution, only PM2:5 was significantly
associated with stroke ever (OR=1:03; 95% CI: 1.01, 1.06 per
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IQR increase) and heart attack ever (OR=1:04; 95% CI: 1.01,
1.06 per IQR increase), similar to the analyses of our main (doc-
tor-diagnosed) end points. Associations of NO2 were similar to
associations of NO2 when values above 80lg=m3 were not set to
80lg=m3 (Table S5).

Multi-exposure Regression Models
Based on the findings of the single-exposure models, we decided
to focus on diabetes and hypertension in multi-exposure models.
We only used NDVI surrounding greenness exposure variables,
as this is a commonly used green exposure measure in epidemio-
logical studies. For air pollution, we used OPDTT, NO2, and
PM2:5, as these variables were most strongly associated with at
least one cardiometabolic disease among the air pollutants.

Potential for confounding. The association of NDVI sur-
rounding greenness with diabetes attenuated slightly when
adjusted for OPDTT and vice versa (Table 3 for a 300-m buffer;
Table S6 for a 1,000-m buffer). The effect estimate (OR) of
NDVI 300 m attenuated from 0.91 (95% CI: 0.89, 0.93) per IQR
increase to 0.93 (95% CI: 0.91, 0.96) and the effect estimate (OR)
of OPDTT attenuated from 1.09 (95% CI: 1.07, 1.12) per IQR
increase to 1.05 (95% CI: 1.03, 1.08). Adjustment for road traffic
noise hardly affected the associations of NDVI 300 m or OPDTT

with diabetes. Associations of road traffic noise with diabetes
attenuated and lost significance when adjusted for NDVI of
300 m or OPDTT.

Associations of OPDTT with hypertension slightly attenuated
after adjustment for NDVI 300 m (Table 4). The weak associa-
tions of NDVI 300 m with hypertension became insignificant

Table 3. Associations of surrounding green (NDVI 300 m), air pollution (OPDTT), and road traffic noise (Lden) with diabetes from single- and two-exposure
models.

Exposure variable Exposure metrica

Two exposure (adj. for)b

OR (95% CI)

Single exposure NDVI 300 m OPDTT Road traffic noise (Lden)

NDVI 300 m Continuous (per IQR) 0.91 (0.89, 0.93) — 0.93 (0.91, 0.96) 0.91 (0.89, 0.93)
Q1 (≤0:44) 1.00 — 1.00 1.00
Q2 (≤0:50) 0.98 (0.93, 1.03) — 0.99 (0.94, 1.04) 0.98 (0.93, 1.03)
Q3 (≤0:55) 0.97 (0.93, 1.02) — 0.99 (0.94, 1.04) 0.97 (0.93, 1.02)
Q4 (≤0:61) 0.91 (0.87, 0.96) — 0.95 (0.90, 0.99) 0.92 (0.87, 0.96)
Q5 (>0:61) 0.80 (0.76, 0.84) — 0.84 (0.79, 0.89) 0.80 (0.76, 0.85)

OPDTT Continuous (per IQR) 1.09 (1.07, 1.12) 1.05 (1.03, 1.08) — 1.09 (1.07, 1.12)
Q1 (<1:01) 1.00 1.00 — 1.00
Q2 (≤1:14) 1.04 (0.99, 1.09) 0.99 (0.94, 1.05) — 1.04 (0.98, 1.09)
Q3 (≤1:24) 1.07 (1.02, 1.13) 1.00 (0.95, 1.06) — 1.07 (1.01, 1.12)
Q4 (≤1:35) 1.17 (1.11, 1.23) 1.08 (1.02, 1.14) — 1.16 (1.11, 1.22)
Q5 (>1:35) 1.20 (1.14, 1.26) 1.10 (1.04, 1.16) — 1.19 (1.13, 1.25)

Road traffic noise (Lden) Continuous (per 5 dB) 1.02 (1.00, 1.03) 1.00 (0.99, 1.02) 1.00 (0.99, 1.02) —
Q1 (<49:3) 1.00 1.00 1.00 —
Q2 (≤52:0) 1.05 (1.00, 1.11) 1.03 (0.98, 1.08) 1.04 (0.98, 1.09) —
Q3 (≤54:7) 1.07 (1.01, 1.12) 1.03 (0.98, 1.09) 1.04 (0.99, 1.09) —
Q4 (≤58:7) 1.08 (1.03, 1.13) 1.04 (0.99, 1.10) 1.05 (1.00, 1.10) —
Q5 (>58:7) 1.06 (1.01, 1.12) 1.03 (0.98, 1.08) 1.02 (0.97, 1.08) —

Note: Results are presented as OR (95% CI) relative to the reference category for the quintile analyses (OR=1:00) or per continuous increase in the linear model. Models were
adjusted for sex, age, marital status, region of origin, education, work, standardized household income, smoking habits, number of cigarettes/day, alcohol consumption, number of alco-
hol glasses/week, physical activity, body mass index, and neighborhood socioeconomic status (SES). —, no data; CI, confidence interval; IQR, interquartile range; Lden, daily average
noise level; NDVI, Normalized Difference Vegetation Index; OPDTT, oxidative potential (OP) metric with dithiothreitol (DTT) assay; OR, odds ratio.
aIQR for NDVI 300 m: 0.13, OPDTT: 0:27 nmolDTT=min=m3.
bIn all two-exposure models, generalized variance inflation factor (GVIF) values were below 1.8.

Table 2. Results of single-exposure regression models.

Exposure variable (increment)

OR (95% CI)

Diabetes Hypertension Stroke Heart attack

NDVI 300 m (0.13) 0.91 (0.89, 0.93) 0.97 (0.96, 0.99) 1.00 (0.96, 1.04) 1.00 (0.97, 1.03)
NDVI 1,000 m (0.14) 0.92 (0.90, 0.94) 0.99 (0.97, 1.01) 1.00 (0.96, 1.04) 1.04 (1.00, 1.07)
TOP10NL 300 m (0.24)a 0.93 (0.91, 0.95) 0.97 (0.95, 0.98) 1.00 (0.96, 1.04) 0.97 (0.94, 1.00)
TOP10NL 1,000 m (0.32)b 0.91 (0.88, 0.93) 0.98 (0.96, 0.99) 0.98 (0.93, 1.03) 0.99 (0.95, 1.03)
NO2 (7.85) 1.06 (1.04, 1.09) 1.02 (1.00, 1.03) 1.00 (0.96, 1.04) 0.98 (0.95, 1.02)
OPDTT (0.27) 1.09 (1.07, 1.12) 1.06 (1.04, 1.07) 1.02 (0.97, 1.06) 1.03 (0.99, 1.06)
OPESR (0.18) 1.02 (1.00, 1.04) 1.01 (1.00, 1.03) 1.02 (0.99, 1.06) 1.00 (0.97, 1.02)
PM10 (1.24) 1.03 (1.01, 1.05) 1.00 (0.99, 1.01) 1.00 (0.96, 1.03) 0.97 (0.95, 1.00)
PM2:5 (0.83) 1.01 (0.99, 1.03) 1.01 (1.00, 1.02) 1.05 (1.01, 1.09) 1.07 (1.05, 1.10)
PM2:5abs (0.25) 1.03 (1.01, 1.05) 1.01 (1.00, 1.02) 1.02 (0.98, 1.05) 1.01 (0.99, 1.04)
PMcoarse (0.82) 1.03 (1.01, 1.05) 1.00 (0.99, 1.01) 1.01 (0.98, 1.05) 0.96 (0.94, 0.99)
Road traffic noise, Lden (5) 1.02 (1.00, 1.03) 1.00 (0.99, 1.01) 1.01 (0.98, 1.03) 1.00 (0.98, 1.02)

Note: Results are presented as OR (95% CI) per interquartile range increase (surrounding green and air pollution) or per 5 dB (road traffic noise). Models were adjusted for sex, age,
marital status, region of origin, education, work, standardized household income, smoking habits, number of cigarettes/day, alcohol consumption, number of alcohol glasses/week,
physical activity, body mass index, and neighborhood socioeconomic status (SES). CI, confidence interval; Lden, daily average noise level; NDVI, Normalized Difference Vegetation
Index; NO2, nitrogen dioxide; OPDTT, oxidative potential (OP) metric with dithiothreitol (DTT) assay; OPESR, oxidative potential (OP) metric with electron spin resonance; OR, odds
ratio; PM2:5, PM with aerodynamic diameter ≤2:5 lm; PM2:5abs, black carbon (PM2:5absorbance); PM10, particulate matter with aerodynamic diameter ≤10 lm.
aSurrounding green space in a 300-m buffer based on TOP10NL.
bSurrounding green space in a 1,000-m buffer based on TOP10NL.
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when adjusted for OPDTT; the OR decreased from 0.97 (95% CI:
0.96, 0.99) to 0.99 (95% CI: 0.98, 1.01). Adjustments for road
traffic noise did not affect the associations of OPDTT or NDVI
300 m with hypertension.

Associations of PM2:5 with stroke and heart attack were not
affected by adjustment for surrounding green and traffic noise
(Table S6), consistent with the lack of associations of these expo-
sures with stroke and heart attack.

Joint odds ratio. For diabetes, we found the largest JOR for a
combination of OPDTT and decreased NDVI 300 m (JOR: 1.13;
95% CI: 1.10, 1.16). The combined JOR was larger than the
single-exposure ORs and similar to the JOR of OPDTT, road traf-
fic noise, and decreased NDVI 300 m and of NO2, OPDTT, road
traffic noise, and decreased NDVI 300 m (Figure 3). For hyper-
tension, the largest JOR was also found for a combination of
OPDTT and decreased NDVI 300 m (JOR: 1.06; 95% CI: 1.04,
1.08). However, the JOR was similar to the OR of OPDTT in the
single-exposure model (OR: 1.06; 95% CI: 1.04, 1.07).

Potential for interaction. We hypothesized that the associa-
tion with exposure to air pollution is strongest (increased odds) in
the highest road traffic noise quintile and vice versa. Further, we
hypothesized that the association with air pollution and road traf-
fic noise is strongest (increased odds) in the lowest surrounding
green quintile and that the association with surrounding green is
strongest (decreased odds) in the lowest air pollution or road traf-
fic noise quintile. However, we found no indications for multipli-
cative interactions in the hypothesized directions between
combinations of exposure variables and cardiometabolic out-
comes. Interaction terms were nonsignificant with the exception
of the NDVI 300m–OPDTT interaction (p<0:005). In the lowest
OPDTT quintile, an IQR increase in NDVI 300 m was associated
with lower odds of diabetes (OR: 0.89; 95% CI: 0.85, 0.93)
(Table 5). However, in the fourth and fifth OPDTT quintile, an
IQR increase in NDVI 300 m was associated with higher odds of
diabetes, opposite to the hypothesized direction of the interaction.
In the lowest road traffic noise quintile, an IQR increase in NDVI
300 m was also associated with lower levels of diabetes (OR:

0.90; 95% CI: 0.85, 0.95). For the odds of hypertension, we also
found no clear pattern (Table S7). Further, we also found no indi-
cations for multiplicative interactions in the hypothesized direc-
tions when we used continuous by continuous exposures terms
(Table S8).

Mediation Analyses
Based on the results of single-exposure regression models with
NDVI surrounding greenness, we only conducted mediation anal-
yses of surrounding greenness with the odds of diabetes.
Assuming underlying assumptions of the mediation analyses
hold, the association between surrounding greenness and diabetes
can be partly explained by decreased levels of NO2 or OPDTT

(Table 6). The proportion mediated was higher for 1,000-m
NDVI surrounding greenness compared with 300-m NDVI. Of
the total estimated effect of 1,000-m NDVI, 38% (95% CI: 22,
60) could be explained by decreased OPDTT concentrations. For
300-m NDVI, the proportion mediated (via OPDTT) was 27%
(95% CI: 13, 44).

Discussion
In single-exposure models, we found that surrounding green was
associated with decreased odds of diabetes, while exposure to air
pollution and road traffic noise was associated with increased
odds of diabetes. Road traffic noise was not associated with dia-
betes after adjustment for air pollution (OPDTT, NO2) or sur-
rounding green, whereas associations with surrounding green and
air pollution were attenuated but still evident in mutually adjusted
models. JORs of combinations of air pollution and decreased sur-
rounding green were higher than the ORs from the single-
exposure models for diabetes. Air pollution and surrounding
green, but not road traffic noise, were associated with hyperten-
sion in single-exposure models. The weak inverse association of
surrounding green with hypertension attenuated and lost signifi-
cance when adjusted for air pollution. Only PM2:5 was associated
with stroke and heart attack.

Table 4. Associations of surrounding green (NDVI 300 m), air pollution (OPDTT), and road traffic noise (Lden) with hypertension in single- and two-exposure
models.

Exposure variable Exposure metrica

Two exposure (adj. for)b

OR (95% CI)

Single exposure NDVI 300 m OPDTT Road traffic noise (Lden)

NDVI 300 m Continuous (per IQR) 0.97 (0.96, 0.99) — 0.99 (0.98, 1.01) 0.97 (0.96, 0.98)
Q1 (≤0:44) 1.00 — 1.00 1.00
Q2 (≤0:50) 1.03 (1.00, 1.07) — 1.04 (1.00, 1.07) 1.03 (0.99, 1.07)
Q3 (≤0:55) 1.02 (0.99, 1.06) — 1.03 (1.00, 1.07) 1.02 (0.99, 1.06)
Q4 (≤0:61) 1.00 (0.96, 1.03) — 1.02 (0.98, 1.05) 0.99 (0.96, 1.03)
Q5 (>0:61) 0.95 (0.91, 0.98) — 0.99 (0.95, 1.03) 0.94 (0.91, 0.98)

OPDTT Continuous (per IQR) 1.06 (1.04, 1.07) 1.05 (1.04, 1.07) — 1.06 (1.04, 1.08)
Q1 (<1:01) 1.00 1.00 — 1.00
Q2 (≤1:14) 1.07 (1.03, 1.10) 1.06 (1.02, 1.09) — 1.07 (1.03, 1.10)
Q3 (≤1:24) 1.06 (1.02, 1.09) 1.04 (1.00, 1.08) — 1.06 (1.02, 1.09)
Q4 (≤1:35) 1.10 (1.07, 1.14) 1.08 (1.04, 1.13) — 1.11 (1.07, 1.15)
Q5 (>1:35) 1.12 (1.08, 1.16) 1.10 (1.06, 1.14) — 1.12 (1.08, 1.16)

Road traffic noise (Lden) Continuous (per 5 dB) 1.00 (0.99, 1.01) 0.99 (0.98, 1.00) 0.99 (0.98, 1.00) —
Q1 (<49:3) 1.00 1.00 1.00 —
Q2 (≤52:0) 1.04 (1.01, 1.08) 1.03 (1.00, 1.07) 1.03 (1.00, 1.07) —
Q3 (≤54:7) 1.00 (0.97, 1.03) 0.99 (0.95, 1.02) 0.98 (0.95, 1.02) —
Q4 (≤58:7) 1.00 (0.97, 1.04) 0.99 (0.96, 1.03) 0.99 (0.95, 1.02) —
Q5 (>58:7) 1.00 (0.96, 1.03) 0.99 (0.95, 1.02) 0.98 (0.94, 1.01) —

Note: Results are presented as OR (95% CI) relative to the reference category (OR=1:00) or per continuous increase. Models were adjusted for sex, age, marital status, region of ori-
gin, education, work, standardized household income, smoking habits, number of cigarettes/day, alcohol consumption, number of alcohol glasses/week, physical activity, body mass
index, and neighborhood socioeconomic status (SES). —, no data; CI, confidence interval, IQR, interquartile range; Lden, daily average noise level; NDVI, Normalized Difference
Vegetation Index; OPDTT, oxidative potential (OP) metric with dithiothreitol (DTT) assay; OR, odds ratio.
aIQR for NDVI 300 m: 0.13, OPDTT: 0:27 nmolDTT=min=m3.
bIn all two-exposure models, generalized variance inflation factor (GVIF) values were below 1.8.
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Figure 3. Joint odds ratios (JORs) for associations of air pollution, road traffic noise, and decreased surrounding green with diabetes and hypertension. The
JORs are based on the CRI methods and represents the odds for a 1-unit [interquartile range (IQR)] increase in air pollution and road traffic noise and a 1-unit
decrease in surrounding green exposure relative to the odds for no increase (no decrease in surrounding green) in any of the exposures. Results are given as
JOR [95% confidence interval (CI)] per continuous increase for air pollution and road traffic noise and decrease for surrounding green (IQR for Normalized
Difference Vegetation Index (NDVI) 300 m: 0.13, IQR for OPDTT: 0:27 nmolDTT=min=m3, IQR for NO2: 7:85 lg=m3, increment for road traffic noise: 5 dB)
(main model). bORs are based on effect estimates of single-exposure models, cJORs are based on effect estimates of two-exposure models, dJORs are based on
effect estimates of three- or four-exposure models. Note: NO2, nitrogen dioxide; OPDTT, oxidative potential (OP) with the dithiothreitol (DTT) assay.
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Relationship between Environmental Exposures
Exposures to surrounding green, air pollution, and road traffic
noise were, overall, moderately correlated, suggesting that con-
founding between the three exposures is possible. Because corre-
lations were moderate, multicollinearity of exposures was not an
issue in our regression analyses. We were therefore able to study
the individual and combined associations of exposure to sur-
rounding green, air pollution, and road traffic noise with cardio-
metabolic disease.

The moderate negative correlations of surrounding green with
air pollutants and road traffic noise that we found were also
reported by other studies (Hystad et al. 2014; Thiering et al.
2016; Dadvand et al. 2012). The relationship between surround-
ing green and air pollution is probably due to several mecha-
nisms. A causal relationship between surrounding green and air
pollution could be removal of air pollutants from the air by
uptake via leaf stomata or deposition to leaf surfaces, especially
of trees. However, according to several studies, this effect is
likely small and mainly limited to PM10 (Setälä et al. 2013; Tallis
et al. 2011; Nowak et al. 2006; Escobedo and Nowak 2009).
Moreover, trees could increase air pollution concentrations by
reducing dispersion of air pollution, especially in urban canyons.
Another more likely explanation for the negative correlation
between surrounding green and air pollution is the absence of air
pollution sources within green areas (Wesseling et al. 2011).

Exposure to road traffic noise was moderately correlated (rs
between 0.23 and 0.46) with air pollution exposure in our study.
This is in line with other studies, according to a review by
Tétreault et al. (2013). Correlations with road traffic noise were
higher for pollutants with strong local traffic sources (NO2,
PM2:5abs) than for pollutants with lower impact of local traffic
(PM2:5, OPDTT). The moderate correlation of road traffic noise
and traffic-related air pollutants is likely due to different features
of local traffic affecting noise and pollution (Boogaard et al.
2009). Both exposures increase with higher traffic intensity in a
street. Lower traffic speed in urban areas is typically associated
with lower noise levels but can result in higher air pollution emis-
sions. Road surface will affect traffic noise but not air pollution.

In this study, air pollution and road traffic noise exposures
were predicted by models, which are (partly) based on land-use
variables. Due to the use of similar land-use predictor variables
and models with modest explained variability, correlations
between modeled exposures can be higher or lower than between
true exposures, respectively. Also, in the LUR model of OPDTT

and in the STAMINA model (road traffic noise) but not in other
models, an indicator of green space was included as a (marginal)
predictor (Yang et al. 2015; Schreurs et al. 2010), potentially
leading to overestimation of the relationship between surrounding
green and OPDTT and road traffic noise. However, the correlation
coefficients we found between modeled air pollution and noise
exposures are similar to studies that evaluated correlations
between measured air pollution and noise exposures in cities
(Davies et al. 2009; Allen et al. 2009). Moreover, correlations
between measured air pollution concentrations at the Dutch
ESCAPE measurement sites and surrounding green and modeled
road traffic noise were similar to correlations of modeled air pol-
lution concentrations (Table S9).

Confounding
In our single-exposure models, surrounding green, air pollution,
and road traffic noise were associated with diabetes. This is in
line with other studies that evaluated exposures to these expo-
sures (Brown et al. 2016; Astell-Burt et al. 2014; Dalton et al.

Table 6.Mediation analyses of NDVI surrounding greenness (binary) and
mediators NO2 and OPDTT (continuous) on the odds of diabetes.

Indicator Mediator Proportion mediated (95% CI)

NDVI 300 m OPDTT 0.27 (0.13, 0.44)
NDVI 300 m NO2 0.20 (0.08, 0.33)
NDVI 1,000 m OPDTT 0.38 (0.22, 0.60)
NDVI 1,000 m NO2 0.34 (0.15, 0.53)

Note: Models were adjusted for sex, age, marital status, region of origin, education,
work, standardized household income, smoking habits, number of cigarettes/day, alco-
hol consumption, number of alcohol glasses/week, physical activity, body mass index,
and neighborhood socioeconomic status (SES). CI, confidence interval; NDVI,
Normalized Difference Vegetation Index; NO2, nitrogen dioxide; OPDTT, oxidative
potential (OP) metric with dithiothreitol (DTT) assay.

Table 5.Multiplicative interactions of surrounding green (NDVI 300 m), air pollution (OPDTT), and road traffic noise (Lden) on the odds of diabetes.

Stratified exposure variable Quintile

Linear exposure variable

OR (95% CI)

NDVI 300 m OPDTT Road traffic noise (Lden)

NDVI 300 m Q1 (≤0:44) — 1.00 (0.94, 1.05) 0.98 (0.95, 1.01)
Q2 (≤0:50) — 1.01 (0.93, 1.09) 1.03 (0.99, 1.08)
Q3 (≤0:55) — 1.08 (1.00, 1.17) 1.03 (0.99, 1.08)
Q4 (≤0:61) — 1.08 (1.00, 1.17) 1.04 (1.00, 1.09)
Q5 (>0:61) — 1.09 (1.01, 1.18) 1.02 (0.98, 1.06)

p.inta — 0.05 0.34
OPDTT Q1 (<1:01) 0.89 (0.85, 0.93) — 1.00 (0.97, 1.02)

Q2 (≤1:14) 0.99 (0.92, 1.06) — 1.00 (0.96, 1.05)
Q3 (≤1:24) 1.02 (0.95, 1.10) — 1.01 (0.97, 1.06)
Q4 (≤1:35) 1.12 (1.04, 1.20) — 1.03 (0.98, 1.07)
Q5 (>1:35) 1.17 (1.09, 1.25) — 1.00 (0.96, 1.05)

p.inta <0:005 — 0.78
Road traffic noise (Lden) Q1 (<49:3) 0.90 (0.86, 0.95) 1.08 (1.03, 1.13) —

Q2 (≤52:0) 0.97 (0.91, 1.04) 1.01 (0.94, 1.08) —
Q3 (≤54:7) 1.02 (0.95, 1.09) 1.00 (0.94, 1.08) —
Q4 (≤58:7) 1.02 (0.96, 1.09) 1.00 (0.93, 1.07) —
Q5 (>58:7) 1.03 (0.97, 1.10) 1.04 (0.97, 1.11) —

p.inta 0.48 0.78 —
Note: Results of multiplicative interactions are given as OR (95% CI) per 1-unit increase (IQR for NDVI 300 m: 0.13, IQR for OPDTT: 0:27 nmolDTT=min=m3, 5 dB for Lden) in
quintiles of the second variable. Models were adjusted for sex, age, marital status, region of origin, education, work, standardized household income, smoking habits, number of ciga-
rettes/day, alcohol consumption, number of alcohol glasses/week, physical activity, body mass index, and neighborhood socioeconomic status (SES). —, no data; CI, confidence inter-
val, Lden, daily average noise level; NDVI, Normalized Difference Vegetation Index; OPDTT, oxidative potential (OP) metric with dithiothreitol (DTT) assay; OR, odds ratio.
ap.int shows the p-value for the overall interaction.
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2016; Eze et al. 2015; Balti et al. 2014; Wang et al. 2014a;
Dzhambov 2015).

We found that the association between air pollution and diabe-
tes was confounded by surrounding green, and vice versa. The ma-
jority of the studies that evaluated the link between air pollution or
surrounding green and diabetes did not adjust for the other expo-
sure (Dalton et al. 2016; Astell-Burt et al. 2014; Ngom et al. 2016;
Maas et al. 2009; Eze et al. 2015; Balti et al. 2014). Findings of
other studies regarding mutual confounding of surrounding green,
air pollution, and noise associations are inconsistent. Eze et al.
(2014) reported that the association between NO2 and diabetes was
attenuated but still positive after adjustment for road traffic noise.
However, road traffic noise was not associated with diabetes after
adjustment for NO2 (Eze et al. 2014). In another study, Eze et al.
(2017) found that road traffic noise remained associated with dia-
betes after adjustment for NO2 or surrounding green (which were
both not associated with diabetes). Sørensen et al. (2013) showed
that road traffic noise exposure remained associated with the odds
of diabetes after adjustment for NOx.

The weak association between surrounding green and hyper-
tension that we found in single-exposure models attenuated and
lost significance after adjustment for air pollution, whereas
adjustments for surrounding green or road traffic noise barely
affected associations of air pollution with hypertension. The lack
of an association with road traffic noise is in line with a recent
meta-analysis (Fuks et al. 2017).

Results of the CRI confirmed the results of our two-exposure
models for diabetes and hypertension. The JOR of exposure to a
combination of air pollution and decreased surrounding green for
diabetes is underestimated by ORs from single-exposure models.
As the inclusion of NO2 or road traffic noise does not increase
the JOR of OPDTT and decreased NDVI surrounding greenness, a
combination of OPDTT and decreased NDVI surrounding green-
ness is sufficient to characterize the JOR of combined exposures
to air pollution, road traffic noise, and decreased surrounding
greenness on diabetes. For hypertension, the CRI showed that the
JOR of exposure to a combination of air pollution and decreased
surrounding green or the JOR of exposure to air pollution, road
traffic noise, and decreased surrounding green is similar to the
OR of air pollution from a single-exposure model. Of all environ-
mental exposures, only PM2:5 was associated with stroke and
heart attack. Associations of PM2:5 with stroke and heart attack
were stronger in the elderly population compared with the full
population. This might reflect greater susceptibility and/or
reduced exposure misclassification in the elderly, since they may
spend more time at or near their residences than younger adults.
We did not find any association of surrounding green or road traf-
fic noise with heart attack or stroke. Other studies evaluating
associations of surrounding green, air pollution, and road traffic
noise with stroke and heart attack morbidity showed mixed
results. Some studies found associations with surrounding green
or road traffic noise, while others reported no relationship
(Atkinson et al. 2013; Babisch 2014; Brown et al. 2016; Cesaroni
et al. 2014; Maas et al. 2009; Pereira et al. 2012; Stafoggia et al.
2014; Vienneau et al. 2015). Possible explanations for the differ-
ent findings are differences in study design, adjustments for cova-
riates, definitions of health outcomes, study populations, and
exposure assessment methods (especially for surrounding green).

Interaction
We did not find indications for interactions in the hypothesized
direction for any cardiometabolic outcome. Some interaction
terms were significant; however, no clear pattern was observed.
As Hicken et al. (2014) reported that stronger associations of air
pollution for people with psychological distress and traffic noise

(positively) and surrounding green (inversely) are associated with
psychological distress (Seidler et al. 2017; Gascon et al. 2015),
we hypothesized that the association with exposure to air pollu-
tion is strongest (increased odds) in the highest road traffic noise
quintile and vice versa, that the association with air pollution and
road traffic noise is strongest (increased odds) in the lowest sur-
rounding green quintile, and that the association with surrounding
green is strongest (decreased odds) in the lowest air pollution or
road traffic noise quintile. Our results are in line with other stud-
ies that also reported no indications for interactions between air
pollution and road traffic noise (Bodin et al. 2016; Sørensen et al.
2013; Selander et al. 2009), except for Sørensen et al. (2014).
Hence, the strength of the association of an environmental expo-
sure is probably not dependent on the level of another environ-
mental exposure.

Mediation
Assuming underlying assumptions of the mediation analyses
hold, the association between NDVI surrounding greenness and
diabetes was partly mediated by decreased concentrations of air
pollution. The proportion mediated was dependent on the buffer
size of surrounding greenness and on the air pollution variable.

The choice to treat air pollution and road traffic noise as con-
founder or mediator of the surrounding green–health association
affects the effect size one should use to evaluate potential health
impacts of surrounding green. If air pollution is primarily a con-
founder, the adjusted slopes for surrounding green from Table 3
(ORs of two-exposure models) should be used. Otherwise, the
slopes from Table 2 (ORs of single-exposure models) should be
used, and we expect that about 20–38% of the association
between surrounding green and diabetes may be related to
reduced air pollution. Higher greenness may lead to lower road
traffic noise and air pollution concentrations by limiting disper-
sion by green barriers or by scavenging of air pollution. These
mechanisms only provide a partial explanation of the empirical
correlation between greenness and air pollution/road traffic noise.
A stronger component is that in a greener area, there are fewer
sources of air pollution and road traffic noise, and, therefore, pol-
lution is lower. This reflects a common source (or lack thereof)
and thus not a causal pathway from green to health.

Surrounding green may affect health via several pathways
other than reduced air pollution; it may stimulate physical activity
(and thereby reduce overweight) and decrease stress. In our medi-
ation analyses, we adjusted for physical activity and weight sta-
tus. Yet an estimated direct effect of surrounding green on
diabetes remained. This might be due to lower stress levels.

Strengths and Limitations
Strengths of this study include the large population size
(>350,000 subjects) with national coverage and the ability to
adjust for SES and lifestyle factors. Furthermore, we were able to
study confounding, interaction (on the multiplicative scale), and
mediation of several environmental exposures on diabetes, hyper-
tension, stroke, and heart attack morbidity. We used multiple
indicators of surrounding green and air pollution exposure, and
all indicators were calculated at the address level. Moreover, all
environmental exposures were assessed between 2009 and 2011,
i.e., relatively close before the time the survey was administered
(2012). The use of recent health and exposure data increases the
relevance for current policies.

This study also has limitations. The cross-sectional study is
more prone to potential selection bias than longitudinal designs.
We had no information about the year of onset of cardiometa-
bolic diseases, and hence, we do not know whether exposures
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precede the health outcome. The biologically most relevant time
period for effects of exposure to the environmental exposures
(surrounding green, air pollution, and road traffic noise) and inci-
dence of cardiometabolic outcomes is not well known. For air
pollution, the hypothesis is that average exposure in the past 2 y
is especially important for cardiometabolic diseases (Schwartz
et al. 2008; Puett et al. 2008). Although we characterized expo-
sure by 2009–2010 estimates, studies have shown that the spatial
variation of air pollution and traffic noise exposure levels remain
stable over periods of about 10 y in Western countries (Eeftens
et al. 2011; Fecht et al. 2016). Current exposure estimates hence
represent past exposure contrasts. However, subjects may have
moved after development of the disease. This residential mobility
may lead to some likely nondifferential exposure misclassifica-
tion and subsequently an underestimation of the associations with
health outcomes. Moreover, we did not have time–activity data,
which may also lead to exposure error and potentially an underes-
timation of the associations. Further, we evaluated prevalence of
a disease instead of incidence. As a result of their diseases, sub-
jects may have changed their lifestyles.

Another limitation is the use of self-reported health outcomes,
which may cause some error due to under- or overreporting.
Studies evaluating the validity of self-reported health outcomes
showed moderate to very good agreements between questionnaire
responses and medical records for diabetes, hypertension, and
myocardial infarction; agreements for stroke varied per study
(Okura et al. 2004; Schneider et al. 2012; Hansen et al. 2014;
Muggah et al. 2013; Machón et al. 2013). Strak et al. (2017) pre-
viously reported that 84.9% of this study population with self-
reported diabetes has also been prescribed diabetes medication,
based on an external dataset. Moreover, they observed similar
associations between air pollution and prevalence of diabetes
when investigating self-reported physician-diagnosed diabetes
and diabetes medication prescription as separate outcomes. Fuks
et al. (2017) found that air pollution was associated with self-
reported hypertension but not with measured hypertension. The
more consistent associations between environmental exposures
and diabetes compared with the cardiovascular outcomes could
be due to better reporting of the disease. Another explanation is
that the exposures could be more strongly associated with fatal
cardiovascular events. Several studies found associations of air
pollution with fatal heart attacks and strokes but not or less strong
with nonfatal heart attacks or strokes (Miller et al. 2007;
Sørensen et al. 2014; Puett et al. 2009; Rosenlund et al. 2006,
2008, 2009). The associations reported in this study might be less
strong than associations with total (fatal + nonfatal) heart attacks
and strokes.

In this study, we evaluated the association between modeled
exposures to air pollution and road traffic noise and cardiometa-
bolic morbidity. Exposure assessment methods to determine air
pollution concentrations and noise levels at residential addresses
are well developed and commonly evaluated (Wang et al. 2013,
2014b; Schreurs et al. 2010). However, exposure assessment
models may differ in their accuracy to predict the exposure.
Performance of the LUR models differed between air pollutants
(Table S1) and may have affected associations. A moderate LUR
model performance could lead to weaker associations. Further, if
LUR models predict air pollution concentrations at residential
addresses more precisely than the STAMINA model predicts
road traffic noise at residential addresses, it could explain the
more robust associations of air pollution exposures in this study.
Because of the lack of noise measurements, we cannot test this
hypothesis. Surrounding green is measured and not modeled, but
a major issue is how well-measured surrounding green reflects
biologically relevant green exposure.

We were not able to verify the four important underlying con-
founding assumptions required for the mediation analyses.
However, we included major confounders in our mediation anal-
yses and hence believe that the assumptions are reasonable. We
performed a mediation analysis in a cross-sectional analysis. The
general limitations of cross-sectional studies with regard to the
temporality of exposure–response relationships do not apply to
the mediation analysis because we assessed mediation between
environmental factors where the relationship is immediate. This
would be different when we had performed a mediation analysis
with an intermediate health marker (e.g., blood pressure) where
the relationship may not be immediate. Further, we did not test
for interactions between surrounding green and air pollution in
the mediation analyses, as we did not find indications for inter-
pretable interactions in the hypothesized direction in the two-
exposure models.

Conclusion
In single-exposure models, we found that surrounding green was
associated with decreased odds of diabetes, while exposure to air
pollution and road traffic noise was associated with increased odds
of diabetes. After adjustment for air pollution (OPDTT, NO2) or sur-
rounding green, the association of road traffic noise with diabetes
attenuated and lost significance. Two-exposure analyses showed
that associations of surrounding green and air pollution with diabe-
tes generally remained, even though they were attenuated. Our
results suggest that studies including only one of the correlated
exposures (surrounding green, air pollution, and road traffic noise)
may overestimate the association of diabetes attributed to that ex-
posure. The joint impact of exposure to a combination of surround-
ing green and air pollution may be underestimated by the
associations from single-exposure models. Future studies would
benefit from including multiple environmental exposures to evalu-
ate individual and combined associations.
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